If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^2x^2-5x=1/49
We move all terms to the left:
7^2x^2-5x-(1/49)=0
We add all the numbers together, and all the variables
7^2x^2-5x-(+1/49)=0
We add all the numbers together, and all the variables
-5x+7^2x^2-(+1/49)=0
We get rid of parentheses
-5x+7^2x^2-1/49=0
We multiply all the terms by the denominator
-5x*49+7^2x^2*49-1=0
Wy multiply elements
343x^2-245x-1=0
a = 343; b = -245; c = -1;
Δ = b2-4ac
Δ = -2452-4·343·(-1)
Δ = 61397
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{61397}=\sqrt{49*1253}=\sqrt{49}*\sqrt{1253}=7\sqrt{1253}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-245)-7\sqrt{1253}}{2*343}=\frac{245-7\sqrt{1253}}{686} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-245)+7\sqrt{1253}}{2*343}=\frac{245+7\sqrt{1253}}{686} $
| 1/2(x-6)=2-3/4 | | z+2=46+3z | | x-3+x+8+x-5=360 | | 10^3x+2=5 | | 2k-9=k | | -16=a/3 | | x.11+3=360 | | 12-3(x-6)=5(2x+4) | | -6y+21=12y-15 | | 2^2x^-5=2 | | 5x+4x=6 | | 2(3x-2)=-4(x-4) | | 2x=x*x-3 | | 7^(x+1)=12 | | 18×2+3=12a+3 | | -6+u=2 | | 2(3x-2=-4(x-4) | | 2h–2=4 | | 3÷5(15d+20)-1÷6(18d-12)=38 | | y−0.01=0.11 | | 0.50x+0.15(50)=43.5 | | 0.2(6x+4)=5(2x-8) | | 12x+32=-12x-7 | | 6m-4+6=-10 | | 5/3(2x-3)(x+1)=10x-5 | | 10=-2s+-6 | | -23+5x=-1-6(5x-8) | | x/2+5=48 | | 2(3x-2)=-4(4x-4) | | 8(3+t)=6(t+1) | | 4x-2=-(1-5x)+2 | | 7^2x^2=49 |